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We study the edge states in graphene in the presence of a magnetic field perpendicular to the plane of the
lattice. Most of the work done so far discusses the edge states in either zigzag or armchair edge graphene
considering an isotropic electron hopping. In practice, graphene can have a mixture of armchair and zigzag
edges and the electron hopping can be anisotropic, which is the subject of this article. We predict that the
mixed edges smear the enhanced local density of states �LDOS� at E=0 of the zigzag edge and, on the other
hand, the anisotropic hopping gives rise to the enhanced LDOS at E=0 in the armchair edge. The behavior of
the LDOS can be studied using scanning tunneling microscopy �STM� experiments. We suggest that care must
be taken while interpreting the STM data, because the clear distinction between the zigzag edge �enhanced
LDOS at E=0� and armchair edge �suppressed LDOS at E=0� can be lost if the hopping is not isotropic and
if the edges are mixed.
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I. INTRODUCTION

Graphene is a one-atom-thick honeycomb lattice of car-
bon atoms. The experimental success of extracting graphene1

has attracted multifarious research activities recently.2–12 The
excitement in various discipline of physics is originated from
graphene’s unique two-dimensional structure.3 The tight-
binding calculations show that the low-energy excitations in
graphene are linearly dispersive, hence massless, and the lin-
ear dispersion is confirmed through integer quantum Hall
measurements.2,3 The Hall conductivity in these experiments
is shown to behave differently from that of the conventional
two-dimensional electron system created in semiconducting
heterostructures, namely, the conductivity shows half integer
rather than the integer effect. The study of the edge states
in the presence of the magnetic field provides one way
of understanding the results of the quantum Hall
measurements.13–15

Several research works have been focused on the study of
the edge states in graphene9,17–28 having two types of edges:
�a� armchair edge and �b� zigzag edge. In the absence of the
magnetic field, in the nearest-neighbor hopping approxima-
tion, the zigzag edge graphene has nondispersive zero energy
states at the edge which are also known as surface states. In
the armchair edge graphene these states are absent. In the
presence of the magnetic field, a bulk graphene has a set of
quantized energy bands �Landau levels�, whereas both the
zigzag and armchair edge graphene develop dispersive edge
states between the Landau levels. The surface states of the
zigzag edge graphene survive in the presence of the magnetic
field. Therefore the presence �absence� of the surface states
in the zigzag �armchair� edge graphene signals about the type
of the edge a given honeycomb lattice has. The presence of
the surface states in a zigzag edge graphene gives rise to an
enhanced local density of states �LDOS� at energy E=0 close
to the edge.

However, the result that the zigzag edge has the surface
states �characterized by the enhanced local density of states
at E=0 at the edge� and the armchair edge does not is ob-
tained by assuming isotropic hopping of the electrons be-
tween the nearest-neighbor carbon atoms. Here, we investi-
gate the effect of possible anisotropic hopping on the edge
states in graphene. Whether the hopping can indeed be an-
isotropic in graphene is a legitimate question. It is easy to
conceive that a graphene lattice on a Si wafer can more
likely have anisotropic hopping because of the strain induced
by the lattice mismatch. Moreover, one can always apply an
intentional external strain on the lattice to induce the aniso-
tropic hopping.

If we consider such a possibility of the anisotropic hop-
ping of the electrons in graphene, the band structure of the
armchair edge graphene changes. It has been shown that the
zero energy states appear even in the armchair edge
graphene21 at zero magnetic field. We numerically determine
the LDOS for anisotropic hopping and show that �a� the
enhanced LDOS at E=0 appears in the armchair edge
graphene, �b� in the zigzag edge graphene, the band structure
changes slightly but the surface states do not disappear, �c�
the surface states persist in both the zigzag and armchair
edge graphene in the presence of the magnetic field.

Most of the studies of the edge states in graphene consider
an ideal edge having either only an armchair or a zigzag
edge. It has been shown experimentally that a practical
graphene lattice has mixed armchair and zigzag edges.11 By
mixed edges we refer to a region of the lattice where edges
of different geometry cross. We mimic those crossing in a
model where a vertical armchair edge crosses a horizontal
and a tilted zigzag edge and a horizontal zigzag edge crosses
a tilted zigzag edge. We study the effects of this edge mixing
on the edge states of graphene. The mixture of the different
edges changes the local density of states at the edges. Here
we mainly focus on the effect of the mixed edges on the
surface states. For our chosen geometry of the edges �see
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Fig. 11� we show that �a� a zigzag edge close to an armchair
edge has reduced LDOS at E=0, �b� an armchair edge close
to a zigzag edge has enhanced LDOS at E=0, �c� near the
crossing of two zigzag edges the LDOS at E=0 can be com-
pletely suppressed.

The edge states in graphene can be studied experimentally
by using a local probe such as scanning tunneling micros-
copy �STM�. The STM experiments measure the differential
conductance which is proportional to the density of states. So
we have calculated averaged DOS over a unit hexagonal cell.

The paper is organized as follows. In Sec. II we give an
overview of the edge states in graphene nanoribbon with
isotropic hopping in the absence and presence of the mag-
netic field. In Sec. III we discuss the effect of the anisotropic
hopping on the edge states. The effect of the random mixing
of edges is discussed in Sec. IV. We conclude our work in
Sec. V.

II. EDGE STATES IN GRAPHENE HAVING
ISOTROPIC HOPPING

The honeycomb lattice of graphene has two nonequiva-
lent lattice sites �A, B� per unit cell. The Hamiltonian then
takes the form of a matrix. The band structure is calculated
using tight-binding model29–33 where the nearest-neighbor
hopping scales the kinetic energy of the electrons. The diago-
nalization of the Hamiltonian reveals that the valence and the
conduction bands meet each other at the corners of the Bril-
louin zone. The density of states is linear in energy close to
the Fermi energy.

A uniform magnetic field can be included in the tight-
binding Hamiltonian by introducing the Peierls phase char-
acterized by the inclusion of a magnetic vector potential A� in
the electron hopping term

H = − �
ij

tijcj
+cie

i2��ij , �1�

where i and j are the nearest-neighbor sites, tij is the nearest-
neighbor hopping energy, ci and ci

+ are fermion annihilation
and creation operators, respectively, and �ij is the phase fac-
tor which is given by the line integral of the magnetic vector
potential as

�ij =
e

hc
�

i

j

A� · dl�. �2�

We write the Hamiltonian matrix for different geometries
of the graphene lattices such as bulk, armchair edge, zigzag
edge, and mixed edge graphene. We diagonalize the Hamil-
tonian to get the eigenvalues and the eigenvectors which is
used to calculate the local density of states. First, we repro-
duce the results obtained based on the standard assumption
of the isotropic hopping. Many of these results are discussed
in several other literatures.18–28 We have presented them here
to facilitate the discussion of the results obtained for the
anisotropic hopping and the mixed edges. For bulk graphene
we reproduce the linear in k dispersion of the quasiparticle
excitations and the linearly vanishing density of states at the
Fermi energy. In the presence of the magnetic-field eigen-

states split into discrete bands �Landau levels�. No state is
allowed between the Landau levels without disorder. The
density of states for this system is shown in Fig. 1. From this
result the relation between the Landau level �LL� energy and
Landau level index n can be extracted. It can be shown that
the energy is proportional to the square root of the LL index,
and the magnetic field.34 These Landau levels have been ob-
served in STM experiments.35

For the study of the edge states we assume either one of
the edge along the X axis �Fig. 2� and write a tight-binding
Hamiltonian for a lattice having 600 lattice sites along X axis
and a periodicity along Y axis with 400 repetition. For zigzag
edge graphene only one type of sublattice, say A, is at the
edge. In armchair edge graphene both A and B sublattices are
at the edge. The dispersion relation of the electrons in the
armchair and zigzag edge graphene in the absence of the
magnetic field are shown in Fig. 3.

The dispersion relation of the electrons in the armchair
edge graphene is qualitatively similar to that of the bulk
graphene, i.e., the dispersion is linear in k close to the half-
filling point. The valence and conduction bands meet at the
Fermi point, depending upon the width of the nanoribbon a
gap can open up in the armchair edge graphene.18 In the case
of zigzag edge graphene the dispersion relation is quite dif-
ferent from that of the armchair edge and bulk graphene due

0

0.002

0.004

0.006

LDOS

E

1/q

0

0.002

0.004

0.006-0.8 -0.4 0 0.4 0.8
0

0.002

0.004

FIG. 1. �Color online� The density of states as a function of
magnetic field and energy is shown. The Landau levels are clearly
resolved as indicated by the enhanced density of states. The small
decay of the amplitude of the density of states at higher energy is
due to the finite-size effect. The magnetic field is expressed in terms
of the magnetic flux quantum ��= BA

2� =�0 /q�. The energy scale is
the hopping term t which is set to unity.

FIG. 2. �Color online� The lattice structure of the graphene sheet
with zigzag edge and armchair edge. While considering the arm-
chair edge, we rotate it by 900 to make the edge along X axis. The
directions of the bonds are labeled by a, b, and c.
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to the presence of the zero energy states.17,20 The zero energy
states of the zigzag edge graphene are called the surface
states.

The dispersion relation of the electrons in the zigzag and
armchair edge graphene has been obtained by solving the
Dirac equation with proper boundary conditions.19 The
boundary condition for the zigzag edge is such that the elec-
tron wave function vanishes on a single sublattice which is
on the edge. It gives rise to particle and holelike bands along
with evanescent wave functions localized at the surface.
These localized states become the zero energy surface states.
For the armchair edge graphene the wave function should
vanish on both the sublattices at the edges leading to the
mixing of the two valley states. These boundary conditions
rightly lead to surface states �no surface states� in the zigzag
�armchair� edge graphene.

We calculate the local density of states �LDOS� close to
and away from the edge. The LDOS at the sublattices A and
B close to the zigzag edge is not the same. The sublattice A
has enhanced LDOS at E=0 whereas the sublattice B has
zero LDOS at E=0. In the armchair edge graphene the
LDOS at A and B are equal and it is zero at E=0. We aver-
age the local density of states over the six lattice sites of the
hexagon, and study its variation as a function of distance of
each hexagon away from the edge. The result is shown in
Fig. 4. In this figure “d” represents the number of the hex-
agonal cell away from the edge. We see in this figure that
there is an enhanced LDOS at E=0 at the zigzag edge but
there is no weight of the LDOS at E=0 in the armchair edge.
The amplitude of the density of state peak decays sharply
away from the zigzag edge.

We repeat the above discussed comparison of the edge
states when the magnetic field is applied perpendicular to the
graphene lattice. Figure 5 shows the dispersion relations of
the electrons in the armchair and zigzag edge graphene. We
see the emergence of additional states between the quantized
Landau level. These are the edge states. The edge states are
gapless and dispersive. There is a significant difference be-
tween the edge states of the armchair and zigzag edge

graphene.19,20 Although the number of edge states branches
below certain energy is equal for both types of edges, they
originate in pairs in the armchair edge graphene �except for
the lowest Landau level�. We would like to note here that
these dispersion relations have been obtained by solving the
Dirac equation with appropriate boundary conditions and us-
ing the tight-binding calculation.9,15,19,20,26 In the presence of
the magnetic field there are zero energy states in both the
armchair and zigzag edge graphene. To distinguish between
the n=0 Landau level states �which are zero energy states�
and the surface states we need to calculate the local density
of states.

We calculate the LDOS on the hexagonal cells as a func-
tion of their distance �d� from the edge. The results are
shown in Fig. 6. In the left figure we can see that there is an
enhanced LDOS at E=0, which corresponds to the surface
states of the zigzag edge. These surface states are absent near
the armchair edge. On the other hand, in the presence of the
magnetic field, the zigzag edge and the armchair edge give
rise to finite LDOS between the Landau levels close to the
edges. It characterizes the dispersive edge states. Similar re-
sults have been presented in Ref. 36 by Abanin et al., using
effective Dirac Hamiltonian near the Dirac point. In contrary
our results rely on the full tight-binding Hamiltonian. Note
that we can see the dispersive edge states more clearly.

Next, we consider the possibility of the anisotropic hop-
ping of the electrons between the nearest-neighbor carbon

FIG. 3. �Color online� The dispersion relation of the electrons in
�a� armchair and �b� zigzag edge graphene in the absence of the
magnetic field is shown. The zigzag edge graphene has zero energy
states whereas they are absent in the armchair edge graphene. The
zero energy states correspond to the localized surface states of the
zigzag edge graphene.

FIG. 4. �Color online� The LDOS as a function of the distance
from the edge in the absence of the magnetic field is shown for �a�
armchair edge and �b� zigzag edge. The LDOS is the averaged
LDOS over each hexagon. The label axis d represents the position
of the hexagon away from the edge. The enhanced LDOS close to
the zigzag edge graphene signifies the surface states. Such states are
absent in the armchair edge.

FIG. 5. �Color online� The dispersion relation of the electrons in
�a� armchair and �b� zigzag edge graphene in the presence of the

magnetic field. The magnetic field is such that �=
�0

825 .
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atoms. We study the effect of this anisotropy on the edge
states of the armchair and zigzag edge graphene in the ab-
sence and presence of the magnetic field.

III. EDGE STATES IN GRAPHENE HAVING
ANISOTROPIC HOPPING

We use the similar geometry as shown in Fig. 2 to study
the effects of the anisotropic hopping on the edge states of
graphene. The directions of the bonds in graphene are la-
beled by a, b and c. In the case of the zigzag edge, by chang-
ing the hopping energy along any combination of the three
bonds, we did not see any qualitative change in the band
structure, especially the surface states. In the absence of the
magnetic field, there are zero energy states which give rise to
the enhanced LDOS at E=0 at the edge. In the presence of
the magnetic field the dispersive edge states appear and the
enhanced LDOS at E=0 corresponding to the surface states
are also present.

The situation is different in the armchair edge graphene.
When the armchair edge is along the X axis and the ribbon
repeats along the Y axis �Fig. 2 rotated by 900�, let us assume
that the hopping energy along direction “a” is reduced. In
this situation the dispersion relation remains similar to that of
the isotropic case �note that we are focusing our discussion
on the edge states�. But the band structure change dramati-
cally when the hopping along the angled bond “b” or “c” is
changed. �If we change the hopping along both the angled
bonds with equal magnitude, the band structure again be-
comes qualitatively the same to that of the isotropic armchair
edge graphene.� When the hopping along the “b” or “c”
bonds is changed, the band structure of the armchair edge
graphene becomes qualitatively similar to that of the zigzag
edge graphene. The presence of the zero energy states as
shown in Fig. 7 �compare with Fig. 3�b�� is one of the ex-
amples. Now the electron wave function also changes,
namely it is localized at the edge of the lattice. Figure 8
shows the LDOS as a function of the distance of the hexago-
nal cell away from the edge. There is a clear enhancement in

the LDOS at E=0; which is the generic behavior of the zig-
zag edge graphene.

In the presence of the magnetic field the dispersion rela-
tion of the electron in the armchair edge graphene �having
anisotropic hopping along the bond “b” or “c”� looks similar
to that of the zigzag edge graphene as shown in Fig. 9 �com-
pare with Fig. 5�b��. The main similarity is that the edge
states now do not come in pair �see Fig. 5�a� for isotropic
case� which is similar to what is seen in the zigzag edge
graphene �see Fig. 5�b��. The wave function also behaves
similar to that of the zigzag edge graphene in the presence of
the magnetic field. The wave functions corresponding to the
surface state and the edge states are localized at the edge.
The LDOS is also similar to that of the zigzag edge graphene
as shown in Fig. 10. There is an enhanced LDOS at zero
energy at the edge.

The effect of the anisotropic hopping on the edge states of
the armchair edge graphene can be understood by using the
concept of induced gauge field due to the lattice deformation
developed by Sasaki et al.16 Let us denote the modulation of
the hopping along a, b, c bonds �see Fig. 2� by ��1, ��2, and
��3 respectively. For small modulation of the hopping
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FIG. 6. �Color online� The two-dimensional plot of LDOS as a
function of the distance of the hexagonal cell from the edge for �a�
zigzag edge and �b� armchair edge. d represents the number of the
hexagonal cells away from the edge. This figure clearly shows the
surface states and the dispersive edge states in the zigzag edge
graphene. It also shows the edge states in armchair edge graphene.
The magnetic field is quantified by the flux per unit cell: �
=�0 /701.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-3 -2 -1 0 1 2 3

kx

E

FIG. 7. �Color online� The dispersion relation of the armchair
edge graphene having anisotropic hopping along the bonds in the
direction b or c in the absence of magnetic field. The hopping en-
ergy is reduced by 30% compare with the unchanged bonds which
have unity hopping. We can see the presence of the zero energy
states similar to that of the isotropic and anisotropic zigzag edge
graphene.
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FIG. 8. �Color online� The LDOS as a function of the distance
of a hexagonal cell away from the edge of the armchair edge
graphene having anisotropic hopping in the absence of magnetic
field. We see an enhanced LDOS at E=0 which corresponds to non
dispersive the surface states. This behavior is similar to that of the
isotropic zigzag edge graphene.
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���i� tij� the induced gauge field can be written as vFAx�r�
=��1�r�− 1

2 ���2�r�+��3�r��, and vFAy�r�=
�3
2 ���2�r�

−��3�r��, where vF is the Fermi velocity and A�r�
= �Ax�r� ,Ay�r�� is the deformation induced vector potential.
The corresponding “effective magnetic field” is given by,

Bz�r�=
�Ay�r�

�x −
�Ax�r�

�y . A nonzero effective field due to the
modulation of the hopping results into the zero energy edge
sates.

Away from the armchair edge the induced effective mag-
netic field is zero because the vector potential is uniform in
the bulk. However at the edge the vector potential has oppo-
site sign in two different valleys.37 Since armchair boundary
couples, the states of different valleys, the vector potential
creates an effective magnetic field localized at the edge. This
magnetic field causes the zero energy states at the edge.

From the above discussions we conclude that the strained
armchair edge graphene can have similar edge states as that
of the zigzag edge graphene. We want to point out that in the
armchair edge graphene the amplitude of LDOS at E=0 de-
pends upon the strength of the anisotropy, the smaller the
anisotropy the smaller is the amplitude. Next we calculate
the LDOS in the vicinity of the edge crossing to study the
effect of the edge mixing on the edge states of graphene.

IV. MIXED EDGE GRAPHENE

To study the effects of the mixed edge on the edge states
of graphene, instead of considering the graphene ribbon, we
directly diagonalize a finite-size system with length LX and
width LY as shown in Fig. 11. The size of the lattice is given
by LX=100 and LY =100 with open boundary conditions
which means that the sizes in both of the directions have the
length of 50 hexagonal cells. Theoretically, there are many
ways to form a lattice with mixed edges. The one we choose
actually represents a lattice where there is a tilted zigzag
edge with edge sites denoted by 1 through 14 �along the
green line� in Fig. 11, two vertical armchair edges and two
horizontal zigzag edges. We diagonalize the tight-binding
Hamiltonian for the whole lattice and calculate the LDOS for
each lattice site. As mentioned above, in the discussion of the
zigzag edge, we denote the lattice site at the edge by sublat-
tice A.

We first imagine the lattice without the tilted zigzag edge
in the presence of the magnetic field. Our calculation shows
that all the hexagonal cells along the horizontal zigzag edge
have enhanced LDOS at E=0 �we would like to remind here
that we calculated the LDOS averaged over the six sites of
the hexagon�. Along a line parallel to the Y axis from the
middle of the zigzag edge the LDOS at E=0 first decreases
sharply and then increases gradually to give the bulk value
deep inside the lattice. Along the armchair edge, all the hex-
agonal cells have suppressed LDOS at E=0 except when
theses cells are close to the zigzag edge where due to the
proximity effect these cells acquire finite LDOS at E=0.
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FIG. 9. �Color online� The dispersion relation of the armchair
edge graphene having anisotropic hopping along the bonds “b” or
“c” �Fig. 2� in magnetic field. It is similar to that of the isotropic
zigzag edge graphene in the presence of the magnetic field. The
similarity is inferred from the disappearance of the pairwise disper-
sive edge states and appearance of the unpaired edge states as it is
seen in the zigzag edge graphene. The magnetic field is given by
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FIG. 10. �Color online� The enhancement of the LDOS at E
=0 is shown in the armchair edge graphene having anisotropic hop-

ping along the bonds b or c in a magnetic field given by �=
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LDOS behaves similar to that of the zigzag edge graphene.

FIG. 11. �Color online� The schematic figure of the arbitrary
edge graphene. The length LX=100 and the width LY =100 means
there are 50 hexagonal cells in each direction. There are two zigzag
edges parallel to the X axis, two armchair edges parallel to the Y
axis and one tilted zigzag edge with edge sites denoted by 1 through
14 �guided by a green line�. The dotted lines represent the part of
the lattice where there are missing carbon atoms.
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Along a line parallel to the X axis from the middle of the
armchair edge, the LDOS at E=0 increases gradually from
zero to give the bulk value deep inside the lattice.

Next, we consider the tilted zigzag edge which is intro-
duced as shown in Fig. 11. The figure shows that the tilted
zigzag edge crosses one horizontal zigzag edge and one ver-
tical armchair edge. Due to the presence of the two zigzag
edges of different geometry, for the technicality of the dis-
cussion, we need to redefine the type of atoms which are
sitting at the edges of the horizontal and tilted zigzag edges.
We can see from the figure that if the edge atom on the
horizontal zigzag edge is denoted by sublattice A, the edge
atom on the tilted edge will be sublattice B. Lets redefine the
sublattice of the tilted zigzag edge by A� �=B with respect to
the horizontal zigzag edge�. Then close to these two edges,
any sublattice of type A �B� corresponding to the horizontal
zigzag edge will be of type B� �A�� for the tilted zigzag
edge. Now, since a sublattice A �B� or A� �B�� always has
enhanced �suppressed� LDOS at E=0, what will be the re-
sultant LDOS on a hexagonal cell that has sites which simul-
taneously behave like sublattice A �B�� and B �A�� for the
horizontal �tilted� zigzag edge? Similar question can be
asked for the hexagonal cell which are close to the crossing
of the vertical armchair and tilted zigzag edges. In the latter
case a sublattice A close to the zigzag edge �which has en-
hanced LDOS at E=0� is also a sublattice A for the armchair
edge �which has zero LDOS at E=0�. In what follows we
have calculate the LDOS to address these scenarios.

In Fig. 12, we show the LDOS averaged over six lattice
sites of the hexagonal cells which lie on the line �1� as shown
in Fig. 11. Along this line there is a tilted zigzag edge on the
left, a horizontal zigzag edge parallel and close to it and an
armchair edge on the right side. At the left side, each atom
sees the effect of both the horizontal and the tilted zigzag
edge. For example, let us have a close look at the cell de-
noted numerically by “1” in Fig. 11; the atom at the top left
corner of this cell is of type B for the horizontal zigzag edge

and of type A’ for the tilted zigzag edge. Because of the
horizontal zigzag edge the LDOS at this sublattice should
have zero magnitude at E=0, but from the reference of the
tilted edge, it has to have an enhanced LDOS at E=0. The
same logic applies to the other sublattices of this cell. Be-
cause of this competition there will be a destructive interfer-
ence and LDOS will be very small at E=0. Now if we go
toward the right of the line �1�, the effect of the tilted zigzag
edge should be reduced but the effect of the proximal hori-
zontal zigzag edge should still be present. Therefore we see a
gradual increase in the LDOS at E=0. At the far right, we
have a proximal horizontal zigzag edge and a vertical arm-
chair edge. For armchair edge the LDOS at E=0 is small for
both A and B sublattices. On the other hand, the zigzag edge
has a high LDOS at E=0 at site A close to the edge. Because
of this competition the LDOS over the hexagonal cell is
reduced at the far right end. It is not zero because of the
presence of the proximal zigzag edge.

We also calculate the LDOS over the hexagonal cell along
the line �2� of the Fig. 11. Along this line, there is a tilted
zigzag edge on left side, two horizontal zigzag edges �which
are quite far� and an armchair edge on the right end of the
line. The result is shown in Fig. 13. In this case, the two
horizontal zigzag edges are out of the picture. The appear-
ance of the enhanced LDOS at E=0 for smaller d signals the
presence of the tilted zigzag edge close to the corresponding
hexagonal cell. The amplitude of this LDOS peak decays as
we move inside the bulk along the line �2�. It is expected
because the effect of the zigzag edge decays away from the
edge. Far from the tilted zigzag edge the bulk behavior char-
acterized by the finite LDOS at E=0 is restored. At the far
right end of the line �2� the LDOS at E=0 starts to gradually
reduce from the bulk value and becomes zero because of the
presence of the armchair edge.

We also calculate the LDOS in the scenario when the
tilted zigzag edge is close to the armchair edge, e.g., along
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FIG. 12. �Color online� The LDOS averaged over the six lattice
sites of each hexagon along the line �1� of Fig. 11 is shown. The
combined effect of the mixed edge is that each atom is either B �A��
type or A �B�� type which reduces the LDOS at E=0. So when we
sum the LDOS of each lattice sites of a hexagon close to the left
end of line �1�, we do not see the LDOS peak at E=0. On the right
end of the line where the zigzag and armchair edges cross, the
LDOS peak close to the zigzag edge is absent due to the presence of
the armchair edge. In the middle of the line �1� we see the effect of
the proximal zigzag edge. For this calculation we use �=�0 /50.
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FIG. 13. �Color online� The LDOS summed over each lattice
sites of the hexagonal cell along the line �2� of Fig. 11. At the far
left end of the line there is an enhanced LDOS and at the far right
end the LDOS is reduced at E=0. The tilted zigzag edge at the left
end of line �2� is far from the horizontal zigzag edges and the
vertical armchair edges leaving the effect of the tilted zigzag edge
unaffected. This leads to the appearance of the enhanced LDOS at
the left end. The LDOS at the far right end is affected by the
presence of the armchair edge hence we get almost zero LDOS at
E=0 at this end. In the middle of the line the LDOS shows the
behavior of the bulk graphene. The magnet field is �=�0 /50.
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the line �3� in Fig. 11. To the left of this line we have tilted
zigzag edge in the proximity of the armchair edge. The two
horizontal zigzag edges are far from it so they are out of the
picture. There is an armchair edge at the far right of the line.
The result is shown in Fig. 14. The LDOS peak at E=0 at the
far left of the line is due to the presence of the tilted zigzag
edge. But the amplitude is reduced compared to that of the
hexagonal cell which is at the left of the line �2� because of
the presence of the proximal armchair edge. At the far right
of the line �3� the LDOS is suppressed due to the presence of
the armchair edge. In the middle of the line we see the bulk
behavior.

To sum up the effects of the mixed edge on the LDOS, we
calculate the LDOS along the tilted edge which is repre-
sented by the zigzag green line in Fig. 11. The result is
shown in Fig. 15. We label the hexagonal cells along the
titled zigzag edge by a set of numbers d=1,2 ,3 , . . . . . . ,14.
We see that when the hexagonal cell is close to the intersec-
tion of the horizontal and the tilted zigzag edge �close to the
top right� the LDOS at E=0 is very small. As we move along
this tilted edge the LDOS at E=0 increases. This is expected
since we have a tilted zigzag edge which is far from the
horizontal zigzag edge and also far from the vertical arm-
chair edge. Close to the bottom-left end of the tilted zigzag
edge the weight of the LDOS at E=0 decreases but remains
finite. The reduction is due to the presence of the proximal
armchair edge.

The edge states of a mixed edge graphene lattice can be
studied analytically using appropriate boundary conditions.
Such boundary conditions have been derived by Akhmerov
and Beenakker.38 The calculation of the dispersion relation
for such mixed edges shows that the surface states of the
perfect zigzag edge become dispersive. In terms of the den-
sity of states, it is shown that the density of the edge states is
maximum for a perfect zigzag edge and decreases continu-
ously when the mixed edge has less and less zigzag bonds
and more and more armchair bonds. Our result is consistent
with this calculation since we have shown that the height of
the local density of states peak at E=0 near the edge is either

reduced or completely washed out when the lattice has
mixed edges.

V. CONCLUSION

Most of the previous studies of the edge states in
graphene have been done with considerations that the
graphene lattice has only one type of edge, either armchair or
zigzag, and that the hopping energy of electrons is isotropic.
In reality the hopping can be anisotropic and the edges can
be mixed. In this paper, we study the edge states considering
a lattice which has both anisotropic electron hopping and
mixed edges. Our focus was on the behavior of the LDOS in
the vicinity of the edges.

We show that the band structure of the armchair edge
graphene changes qualitatively when hopping becomes an-
isotropic. It develops zero energy states. The local density of
states also changes. It now gives rise to the enhanced LDOS
at E=0 which is similar to what zigzag edge does whether
there is isotopic hopping or the anisotropic hopping. The
amplitude of the enhanced LDOS in the strained armchair
edge graphene depends on the degree of the anisotropy.

In the mixed edge structure, we assumed to have a tilted
zigzag edge which meets with the horizontal zigzag edge at
one side and with the armchair edge at the other side. In this
situation, we show that �a� near the crossing of the horizontal
and slanted zigzag edges the enhanced LDOS at E=0 is
completely suppressed, �b� near the crossing of the armchair
and slanted zigzag edges the LDOS at E=0 is smeared out,
and �c� near the crossing of the horizontal zigzag and vertical
arm chair edges, the LDOS at E=0 at the armchair edge side
is enhanced. So, depending upon the structure of the lattice
and the position where the LDOS is going to be probed, the
surface state of the zigzag edge can have weight between
zero to some maximum values. Our results are important to
interpret data of the LDOS measurements in the STM experi-
ments.
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FIG. 14. �Color online� The LDOS summed over each lattice
site of the hexagonal cell along the line �3� of Fig. 11. At the left
side of the lattice we see an enhanced LDOS at E=0 corresponding
to the presence of the tilted zigzag edge and a reduced LDOS at the
other side corresponding to the presence of the armchair edge. If we
compare the LDOS at the left end of line �2�, we see a reduced
amplitude of the LDOS at E=0 at the left end of the line �3�, which
is due to the proximity of the tilted edge to the armchair edge. The
magnet field is �=�0 /50.
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FIG. 15. �Color online� The LDOS in the middle of the zigzag
edge along tilted zigzag edge �green line� of the Fig. 11. The hex-
agonal cells denoted by d=1,2 ,3 , . . . . . . ,14 are the leftmost unit
cell in the titled edge. The LDOS at E=0 first decreases due to the
destructive interference caused by the presence of the horizontal
and tilted zigzag edge. As we go inside the lattice along Y axis the
role of the horizontal zigzag edge decreases and the role of the titled
zigzag edge increases leading to the enhanced LDOS at E=0,
where, in the absence of the titled edge the LDOS would behave as
that of the bulk graphene. As we move close to the left most arm-
chair edge the amplitude of the LDOS again decreases. The magnet
field is �=�0 /50.
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